Pagina iniziale | Navigazione |
Google

Matrice triangolare

In matematica il termine matrice triangolare riguarda due classi di matrici quadrate, le matrici triangolari inferiori e le matrici triangolari superiori.

Table of contents
1 Definizioni
2 Esempi
3 Dualità fra triangolari inferiori e superiori
4 Prodotti di matrici triangolari
5 Applicazioni

Definizioni

Le prime sono matrici della forma

Se i numeri sulla diagonale di una tale L sono tutti uguali a 1

la matrice è chiamata matrice unità triangolare inferiore o '''matrice triangolare inferiore normata'''.

Si dice invece matrice triangolare superiore una matrice della forma

Se tutte le entrate sulla diagonale di U sono uguali ad 1
la matrice è chiamata matrice unità triangolare superiore o matrice triangolare superiore normata.

In modo più pignolo invece che di matrice triangolare inferiore (superiore) si dovrebbe parlare di matrice triangolare inferiore/sinistra (superiore/destra).

Esempi

è una matrice triangolare superiore e

è una triangolare inferiore.

Dualità fra triangolari inferiori e superiori

Evidentemente una matrice che è sia triangolare inferiore che triangolare superiore è una matrice diagonale. Più precisamente l'intersezione dell'insieme delle matrici triangolari inferiori con l'insieme delle matrici triangolari superiori coincide con l'insieme delle matrici diagonali.

Più particolarmente l'intersezione dell'insieme delle matrici triangolari inferiori normate con l'insieme delle matrici triangolari superiori normate contiene solo la matrice identità.

Si osserva anche che per trasposizione si trasformano le matrici triangolari inferiori in matrici triangolari superiori e viceversa. In particolare la trasposizione trasforma le matrici triangolari inferiori normate in matrici triangolari superiori normate e viceversa.

Quindi molte conclusioni ottenute esaminando le matrici singolari inferiori si possono trasformare piuttosto facilmente in conclusioni sulle matrici singolari superiori

Prodotti di matrici triangolari

Il prodotto di due matrici triangolari inferiori è una matrice triangolare inferiore: quindi l'insieme delle matrici triangolari inferiori forma un'algebra.

Più in particolare il prodotto di due matrici triangolari inferiori normate è una matrice triangolare inferiore normata: quindi l'insieme delle matrici triangolari inferiori normate forma un'algebra che costituisce una sottoalgebra della precedente.

Per dualità le stesse conclusioni si traggono per le matrici triangolari superiori.

È particolarmente semplice e significativa l'algebra delle matrici triangolari inferiori normate 2 x 2. Se a e b sono due reali si osserva che

Si osserva che queste matrici esprimono le trasformazioni del piano che portano le rette orizzontali y=k in se stesse facendole slittare rigidamente in modo che il punto (x,y) vada nel punto (x+ay,y).

Le algebre di matrici triangolari superiori hanno una generalizzazione naturale nell' analisi funzionale che conduce alle algebre nido.

Generalmente, le operazioni sulle matrici triangolari possono essere compiute in metà tempo delle corrispondenti su matrici generiche.

Applicazioni

La lettera L è usata comunemente per identificare una generica matrice triangolare inferiore; per le generiche matrici triangolari superiori si usano sia U che R, la lettera R richiamando l'iniziale di destra in inglese e tedesco.

Un sistema di equazioni lineari che in forma matriciale si scrive

o

è molto facile da risolvere. La prima equazione matriciale si trascrive nel sistema di equazioni

che può essere risolto seguendo un semplice
schema ricorsivo

Il sistema di equazioni retto da una matrice triangolare superiore normata può essere risolto per via analoga.

Poichè le matrici triangolari si calcolano facilmente, sono molto importanti in analisi numerica. La decomposizione LU fornisce un algoritmo per la decomposizione di ogni matrice invertibile A in una matrice triangolare superiore normata L e una matrice triangolare inferiore R.

Vedi anche


GNU Fdl - it.Wikipedia.org




Google | 

Enciclopedia |  La Divina Commedia di Dante |  Mappa | : A |  B |  C |  D |  E |  F |  G |  H |  I |  J |  K |  L |  M |  N |  O |  P |  Q |  R |  S |  T |  U |  V |  W |  X |  Y |  Z |