Nucleosintesi stellare
La nucleosintesi stellare è il termine che indica collettivamente le reazioni nucleari che avvengono all'interno di una stella, con l'effetto di produrre i nuclei degli elementi chimici.Nelle stelle vengono prodotti tutti gli elementi chimici tranne l'idrogeno, che fa da carburante iniziale. L'elio, benché prodotto in quantità , è già presente nell'Universo in grandi percentuali, e l'aggiunta da parte delle stelle è piccola. Per tutti gli altri elementi, compresa la grande maggioranza degli atomi che compongono il nostro pianeta, assenti o presenti in quantità trascurabili nel gas interstellare, le stelle sono le principali responsabili della loro esistenza. In particolare le stelle di grande massa producono le quantità più grandi di elementi fino al ferro-56, mentre gli elementi più pesanti possono essere prodotti in un'esplosione di supernova, che avviene alla fine della vita di una stella di grande massa.
Per dare un'idea intutiva del processo, la fusione nucleare che avviene al centro del Sole è quasi la stessa di quella di una bomba atomica. In effetti una stella è un'esplosione atomica continua, contenuta dal suo stesso peso, o equivalentemente un reattore a fusione nucleare. All'interno del Sole vengono fuse 600 milioni di tonnellate di idrogeno al secondo, e di queste 4 milioni di tonnellate vengono convertite in energia pura, secondo la famosa equazione di Einstein E=mc2.
Tali reazioni furono scoperte in un lungo arco di tempo che iniziò all'inizio del XX secolo, quando gli astrofisici si resero conto per la prima volta che l'energia delle reazioni di fusione nucleare erano responsabili della longevità del Sole come fonte di calore e luce. Le spiegazioni precedenti (combustibile chimico, contrazione gravitazionale) erano inadeguate per spiegare l'età di 4,5 miliardi di anni della nostra stella.
Nel 1920 Arthur Eddington, sulla base di precise misure gli atomi da parte di F.W Aston, fu il primo a suggerire che le stelle ottenessero la loro energia dalla fusione nucleare di idrogeno in elio.
Nel 1928, George Gamow derivò quello che è oggi chiamato il fattore Gamow, una formula quanto-meccanica che dà la probabilità di portare due nuclei sufficientemente vicini perché la forza nucleare forte possa superare la barriera di Coulomb.
Il fattore Gamow fu usato nella decade seguente da Robert Atkinson e Fritz Houtermans, e più tardi da Gamow stesso e da Edward Teller per calcolare il ritmo a cui le reazioni nucleari si svolgono alle alte temperature che si pensa esistano nell'interno delle stelle. Nel caso del Sole, il calcolo dà il risultato esposto più sopra, assieme al tempo medio necessario perché un certo protone venga fuso: circa 13 miliardi di anni, il che spiega facilmente l'età della nostra stella.
Nel 1939, in un articolo chiamato "Energy Production in Start" (Produzione di energia nelle stelle), Hans Bethe analizzò le differenti possibilità per delle reazioni in cui l'idrogeno viene fuso in elio. Selezionò due processi che pensava fossero quelli che effettivamente avvenivano nelle stelle. Il primo, la catena protone-protone, è la principale fonte di energia nelle stelle di piccola massa, come il Sole o più piccole. Il secondo, il ciclo carbonio-azoto-ossigeno, che era stato considerato anche da Carl von Weizsäcker nel 1938, è importante in stelle più grandi.
Negli anni seguenti furono aggiunti molti dettagli alla teoria di Bethe, come un famoso articolo del 1957 pubblicato da Margaret Burbidge, Geoffrey Burbidge, William Fowler e Fred Hoyle. Tale articolo riassumeva e rifiniva le ricerche precedenti in una visione coerente che era consistente con le abbondanze osservate degli elementi.
Le reazioni più importanti sono:
- Fusione dell'idrogeno:
- la catena protone-protone
- il ciclo carbone-azoto-ossigeno
- Fusione dell'elio:
- il processo alpha
- il processo tre alfa
- Fusione di elementi più pensanti:
- processo di fusione del carbonio
- processo di fusione dell'ossigeno
- processo di fusione del silicio
- Produzione di elementi più pesanti del ferro:
- cattura di neutroni:
- il processo R
- il processo S
- cattura di protoni:
- il processo P
- il processo P
- cattura di neutroni:
Referenze
(in inglese):
- H. A. Bethe, Energy Production in Stars, Phys. Rev. 55 (1939) 103; online edition (subscription needed)
- H. A. Bethe, Energy Production in Stars, Phys. Rev. 55 (1939) 434-456; online edition (subscription needed)
Fisica |
Progetto Fisica | Portale Fisica |